Cover image: The South Australian glossy black-cockatoo Calyptorhynchus lathami halmaturinus is restricted to Kangaroo Island, Australia, where it numbers 350 birds and is managed intensively. High-emissions climate change or reduced management of nest predators could cause steep population declines in this rare cockatoo (see p. 785).

Mark Whittingham, Jos Barlow

Editors: E.J. Milner-Gulland, Phil Hulme, Marc Cadotte, Mark Whittingham, Jos Barlow

• Practitioner’s Perspective: Collaborative research and conservation issues
• Assessing anthropogenic impacts
• Management under climate change
• Agronecosystems
• Conservation, restoration and regeneration
Managing the long-term persistence of a rare cockatoo under climate change

J. Berton C. Harris1*, Damien A. Fordham1, Patricia A. Mooney2, Lynn P. Pedler2, Miguel B. Araújo3,4, David C. Paton1, Michael G. Stead1, Michael J. Watts1, H. Resit Akçakaya5 and Barry W. Brook1

1School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia; 2Glossy Black-Cockatoo Recovery Program, Department for Environment and Heritage, Kingscote, SA 5223, Australia; 3Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, CSIC, C/-José Gutierrez Abascal, 2, Madrid 28006, Spain; 4Rui Nabeiro Biodiversity Chair, CIBIO, University of Évora, Largo dos Colegiã, 7000 Évora, Portugal; and 5Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA

Summary

1. Linked demographic-bioclimatic models are emerging tools for forecasting climate change impacts on well-studied species, but these methods have been used in few management applications, and species interactions have not been incorporated. We combined population and bioclimatic envelope models to estimate future risks to the viability of a cockatoo population posed by climate change, increased fire frequency, beak-and-feather disease and reduced management.

2. The South Australian glossy black-cockatoo Calyptorhynchus lathami halmaturinus is restricted to Kangaroo Island, Australia, where it numbers 350 birds and is managed intensively. The cockatoo may be at particular risk from climate change because of its insular geographic constraints and specialised diet on a single plant species, Allocasuarina verticillata. The cockatoo population model was parameterised with mark-resight-derived estimates of survival and fecundity from 13 years of demographic data. Species interactions were incorporated by using a climate-change-driven bioclimatic model of Allocasuarina verticillata as a dynamic driver of habitat suitability. A novel application of Latin Hypercube sampling was used to assess the model’s sensitivity to input parameters.

3. Results suggest that unmitigated climate change is likely to be a substantial threat for the cockatoo: all high-CO2-concentration scenarios had expected minimum abundances of <160 birds. Extinction was virtually certain if management of nest-predating brush-tail possums Trichosurus vulpecula was stopped, or adult survival reduced by as little as 5%. In contrast, the population is predicted to increase under low-emissions scenarios.

4. Disease outbreak, increased fire frequency and reductions in revegetation and management of competitive little corellas Cacatua sanguinea, were all predicted to exacerbate decline, but these effects were buffered by the cockatoo population’s high fecundity.

5. Spatial correlates of extinction risk, such as range area and total habitat suitability, were non-linearly related to projected population size in the high-CO2-concentration scenario.

6. Synthesis and applications. Mechanistic demographic-bioclimatic simulations that incorporate species interactions can provide more detailed viability analyses than traditional bioclimatic models and be used to rank the cost-effectiveness of management interventions. Our results highlight the importance of managing possum predation and maintaining high adult cockatoo survival. In contrast, corella and revegetation management could be experimentally reduced to save resources.

Key-words: beak-and-feather disease, bioclimatic envelope, Calyptorhynchus lathami, climate change, glossy black-cockatoo, management, population viability analysis, revegetation, wildfire

*Correspondence author. E-mails: aramidopsis@gmail.com; bert.harris@adelaide.edu.au

Introduction

Climate change may be one of the most potent extinction drivers in the future, especially because it can exacerbate existing threats, and there is an urgent need for conservation science to improve tools to predict species’ vulnerability to climate change (Sekercioglu et al. 2008). One popular approach is the use of bioclimatic envelope models (BEMs), also known as species distribution models. These models use associations of present-day distributions with climate to forecast changes in species’ bioclimatic envelopes (Pearson & Dawson 2003). BEMs have, in some cases, been used to assess extinction risk for thousands of species under climate change scenarios (e.g. Sekercioglu et al. 2008). However, predictions from these models are of constrained value because they (i) are correlative and yet typically require extrapolation to environmental space that is beyond the bounds of the statistical fitting (Thuiller et al. 2004); (ii) use range area type estimates to infer extinction risk rather than measuring threat to population persistence (Fordham et al. 2011); (iii) suffer from model selection uncertainty (Araujo & Rahbek 2006); and (iv) do not consider biotic interactions (e.g. Araújo & Luoto 2007).

Spatially explicit population-modelling techniques that link demographic models with BEMs are being used to add ecological realism to correlative BEM forecasts (Huntley et al. 2010). Combining quantitative population models and BEMs provides a more mechanistic and probabilistic approach compared to modelling distribution alone, because it links demographic parameters to climate and other explanatory variables and explores a range of uncertain outcomes using stochastic simulation (Brook et al. 2009). Several studies have combined habitat and population models to assess population viability (e.g. Akçakaya et al. 2004), but few analyses have coupled population and bioclimatic models to estimate extinction risk in the context of climate change (Keith et al. 2008; Anderson et al. 2009; Fordham et al. in press), and this methodology has rarely been used in birds (but see Aiello-Lammens et al. 2011). Ideal case-study species for this approach are those with long-term estimates of vital rates (and their variance), representative occurrence data over their geographic range and detailed knowledge of the environmental drivers influencing range and abundance.

The South Australian glossy black-cockatoo Calyptorhynchus lathami halmaturinus Temminck (GBC) formerly inhabited mainland South Australia, but now survives only on Kangaroo Island (located off the southern coast of central Australia) and is considered ‘endangered’ by the Australian government (DEH 2000; Fig. 1). When the GBC recovery program began in 1995, the cockatoo population comprised c. 200 individuals. From 1998 to the present, the intensively managed population has increased gradually to the current estimate of c. 350 birds (Pedler & Sobey 2008). The GBC’s specialised habitat requirements and slow life history make it inherently vulnerable to decline (Cameron 2006), and its small population size and insular geographic constraints (single location) put it at high risk from population-wide catastrophes such as fire and disease (Pepper 1997). High-quality Allocasuarina verticillata L.A.S. Johnson, drooping

Fig. 1. The South Australian glossy black-cockatoo Calyptorhynchus lathami halmaturinus is restricted to Kangaroo Island, South Australia. Maps showing (a) remnant native vegetation and protected areas and (b) elevation.

she-oak, woodlands provide food and cover that are critical to the survival of the GBC; indeed, *A. verticillata* seeds make up 98% of the GBC’s diet (Chapman & Paton 2006). Hollow-bearing eucalypts (primarily *Eucalyptus cladocalyx* F. Muell and *E. leucoxylon* F. Muell), which take many decades to mature and may be vulnerable to fire, are required for nesting (Crowley et al. 1998).

The GBC faces an interacting set of current and future threats including nest competition and predation, wildfire, climate change and disease (Mooney & Pedler 2005). GBC recruitment can be severely impaired by nest predation from arboreal brush-tail possums *Trichosurus vulpecula* Kerr. Protecting nest trees from possum predation by fitting metal collars and pruning adjacent tree crowns increased nest success from 23 to 42% (Garnett, Pedler & Crowley 1999). Approximately, 45% of nests are now placed in artificial hollows fitted by managers. Little corellas *Cacatua sanguinea* Gould and honeybees *Apis mellifera* L. are nest competitors that are also managed (Mooney & Pedler 2005). Wildfires are another threat that can kill nestlings and destroy large areas of habitat (Sobey & Pedler 2008). Kangaroo Island is expected to warm by 0.3–1.5 °C and receive 0–20% less rainfall by 2050 compared to 1990 levels, under a mid-range greenhouse-gas emissions scenario (CSIRO 2007). Climate change is likely to threaten the GBC by causing *A. verticillata*’s climatic niche to shift and compress southwards towards the southern ocean boundary (Stead 2008), causing heat- and drought-induced mortality (Cameron 2008) and an increased frequency of extreme events, such as fire and drought (Dunlop & Brown 2008). In addition, *A. verticillata* cone production may decrease as conditions become warmer and drier (D. C. Paton personal observations), limiting the GBC’s food supply. Lastly, psittacine beak-and-feather disease, although not yet reported in Kangaroo Island GBCs, could potentially cause substantial declines in the population if an outbreak occurred (DEH 2005; Appendix S5).

Here, we develop a detailed spatial population viability model for the GBC by building a demographic model, linking the demographic model to landscape and climate variables and testing scenarios in a population viability analysis. The analysis is based on a comprehensive location-specific data set and incorporates climate change and its interaction with fire, disease and management. Two earlier attempts at modelling the GBC used non-spatial simulations to investigate extinction risk (Pepper 1996; Southgate 2002), but both were limited in scope and made simplifying assumptions. For instance, in contrast to known population increases, Pepper (1996) predicted a rapid decline to extinction, and Southgate (2002) suggested the population would decline by 10% annually (Appendix S1). These studies were hampered by the limited data available when the analyses were performed and did not consider fire, disease, climate change or the positive influence of management. By contrast, we use a detailed data set collected by the GBC recovery program since 1995, consisting of 13 years of mark-resight and reproductive data and extensive documentation of catastrophes and management intervention, to parameterise our models. Few parrots have such complete demographic data available (Snyder et al. 2004).

Our approach incorporates a critical biotic interaction between the GBC and its primary food source, *A. verticillata*, by incorporating projected changes in the plant’s range in the spatially explicit cockatoo model to provide direct measures of extinction threat (e.g. expected minimum abundance) as well as implied measures calculated from changes in habitat suitability and range size (Fordham et al. 2011). Similar approximations of species interactions have been used with BEMs (e.g. Araújo & Luoto 2007; Barbet-Massin & Jiguet 2011), but never in combination with a demographic model. Specifically, we sought to (i) model the population trajectory and extinction risk of the GBC up to the year 2100; (ii) determine the possible future effects of current and emerging threats to the subspecies; (iii) assess the impact of choosing different management strategies on GBC population trends; and (iv) evaluate the relative importance of demography and anthropogenic extinction drivers on the GBC’s population viability.

Materials and methods

POPULATION MODEL

For the demographic component of the model, we used 13 years of mark-resight surveys to estimate survival rates using program MARK v.5.1 (Cooch & White 2008). Birds are marked with numbered bands as nestlings at several sites across the island (some areas are better sampled than others), and telescopes are used to resight marked birds during the annual post-breeding census. The mark-resight analysis was used to test the importance of management and environmental variables on survival rates of juvenile (< 1 year old) and sub-adult/adult GBCs (Table S1). Fecundity was calculated as the number of fledglings of each sex produced per female of breeding age from 1996 to 2008 (see Appendix S2 for details on the mark-resight analysis, fecundity calculations and standard deviations used in the population model). Survival and fecundity estimates were combined with other life-history information, such as age of first breeding, to build a stage- and sex-structured, stochastic population model of the GBC (Table 1). We used RAMAS GIS (Akcakaya & Root 2005) to create a spatially explicit metapopulation model that links the subspecies’ demography to landscape data, comprising dynamic bioclimatic maps for *Allocasuarina verticillata* (the GBC’s primary food source), and raster layers of native vegetation, substrate and slope (see below).

BIOCLIMATIC SUITABILITY MAPS FOR ALLOCASUARINA VERTICILLATA

Climate change was incorporated by modelling the potential distribution of *Allocasuarina verticillata*, as a function of three key climate variables that influence the species’ distribution (annual rainfall, January temperature and July temperature; Stead 2008). We used meteorological data to estimate long-term average annual rainfall and mean monthly January and July temperature (1980–1999) for Australia (Fordham, Wigley & Brook 2012). We used thin-plate splines and a digital elevation model to interpolate between weather stations (Hutchinson 1995; Appendix S3). An annual time series of climate change layers was generated for each climate variable based

on two emission scenarios: a high-CO$_2$-concentration stabilisation reference scenario, WRE750, and a strong greenhouse gas mitigation policy scenario, LEV1 (Wigley et al. 2009). WRE750 assumes that atmospheric CO$_2$ will stabilize at about 750 parts per million (ppm), whilst under the LEV1 intervention scenario CO$_2$ concentration stabilizes at about 450 ppm. Future climate layers were created by first generating climate anomalies from an ensemble of nine general circulation models and then downscaling the anomalies to an ecologically relevant scale (c. 1 km2 grid cells) (Fordham, Wigley & Brook 2012; Fordham et al. 2012; Appendix S3). Averages from multiple climate models tend to agree better with observed climate compared to single climate models, at least at global scales (Fordham, Wigley & Brook 2012).

Occurrence records for *A. verticillata* (*n* = 572) came from cleaned records from the South Australian biological survey. An equal number of pseudoabsences were generated randomly within the study region (Appendix S3). Although our focus was on Kangaroo Island, we modelled the distribution of the species across South Australia (325,608 grid cells) to better capture its regional niche (see Barbet-Massin, Thuiller & Jiguet 2010). We modelled the potential current and future climatic suitability of the landscape for *A. verticillata* with an ensemble of seven bioclimatic modelling techniques, including simple surface-range envelope models and more complex machine learning approaches, in BIOENSEMBLES software (Diniz-Filho et al. 2009; Appendix S3). Ensemble modelling generates consensus projections that circumvent some of the problems of relying on single-model projections of climate change impacts on species’ potential distributions (Araújo & New 2007). We used BIOENSEMBLES models to forecast annually for 90 years (i.e. climate suitability maps for each year were created from 2010 to 2100). Nonetheless, our model assumed that the *A. verticillata*-GBC relationship would remain strong and we were unable to consider other species interactions.

INTEGRATING THE POPULATION MODEL AND SPATIAL INFORMATION

Binomial generalised linear models (GLMs) were used to relate GBC occurrence records to *A. verticillata* present-day climate suitability (above) and three landscape variables that are known to influence the distributions of the GBC and *A. verticillata*: substrate (Raymond & Retter 2010), native vegetation cover (http://www.environment.gov.au/erin/nvis/index.html), and slope (http://www.ga.gov.au/meta/ANZCW0703011541.html; Appendix S4). Verified GBC occurrence records (*n* = 349) consist of presences only. Pseudoabsences were generated by down-weighting cells close to a known sighting (Appendix S4). The analysis was performed with package MuMln (Bartoń 2012) in R (v. 2.12.1; R Development Core Team, http://www.R-project.org). The best model (determined by AIC) from this analysis was used to parameterise the habitat-suitability function in RAMAS (Appendix S4).

RAMAS uses the habitat-suitability function to assign a habitat-suitability value to each grid cell of the study area based on values of the input rasters (in this case *A. verticillata* climatic suitability, substrate, native vegetation and slope). Every grid cell above the habitat-suitability threshold is considered suitable, and suitable cells are aggregated based on geographical distance (the spatial distance at which the species can be assumed to be panmictic; Akçakaya & Root 2005). The habitat-suitability threshold (0.83) and geographical distance (four cells) values were derived iteratively to match the well-known current extent of suitable habitat for the GBC on the island (Mooney & Pedler 2005). The initial population size in all scenarios was 350 birds, in accordance with recent estimates (Pedler & Sobey 2008). The island’s current carrying capacity was estimated at 653 birds by combining feeding habitat requirements (Chapman & Paton 2002) with data on *A. verticillata* area (Appendix S4). Dispersal estimates came from data on movements of marked individuals (Fig. S1). A ceiling model of density dependence was used to approximate the GBC’s intraspecific competition for nest hollows and feeding habitat (Mooney & Pedler 2005). Population dynamics were linked to habitat via the density dependence function: habitat determines carrying capacity that conditions demographic rates (survival and fecundity) in each year, as a function of population size and carrying capacity in that year (Akc¸akaya & Root 2005). Each simulation incorporated environmental and demographic stochasticity and was run 10 000 times (Akçakaya et al. 2004).

Table 1. Stage matrices used in the model with stable age distribution (SAD) of each age class

<table>
<thead>
<tr>
<th>Age</th>
<th>0</th>
<th>1</th>
<th>2+</th>
<th>SAD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female Age 0</td>
<td>0</td>
<td>0</td>
<td>0 2324 (0 0951)</td>
<td>7.3</td>
</tr>
<tr>
<td>Age 1</td>
<td>0 612 (0 0951)</td>
<td>0</td>
<td>0 43</td>
<td></td>
</tr>
<tr>
<td>Age 2+</td>
<td>0</td>
<td>0 913 (0 0951)</td>
<td>0 913 (0 7148)</td>
<td>32.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4+</th>
<th>SAD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Age 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 913 (0 0951)</td>
<td>7.3</td>
</tr>
<tr>
<td>Age 1</td>
<td>0 612</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 913 (0 0951)</td>
<td>7 913 (0 7148)</td>
</tr>
<tr>
<td>Age 2</td>
<td>0</td>
<td>0 913</td>
<td>0</td>
<td>0</td>
<td>0 913 (0 0951)</td>
<td>7 913 (0 7148)</td>
</tr>
<tr>
<td>Age 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 913 (0 0951)</td>
<td>7 913 (0 7148)</td>
</tr>
<tr>
<td>Age 4+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 913 (0 0951)</td>
<td>7 913 (0 7148)</td>
</tr>
</tbody>
</table>

The top row in each matrix represents fecundities, and the subdiagonal and diagonal in the bottom right elements represent survival rates. The first stage (age 0) for both sexes is the sub-adult stage. The final stages (female, age 2+; male, age 4+) are the adult stages. The intermediate stages are pre-breeding sub-adult stages. The proportional sensitivities of the finite rate of increase to small changes in each of the non-zero elements of the female matrix (elasticities) are in parentheses.

In RAMAS, we specified fecundity values of 0 2324 and 0 296 for females and males, respectively (Appendix S2).
Our main measures of population viability were expected minimum abundance (EMA) and mean final population size of persisting runs. EMA, which is equivalent to the area under the quasi-extinction risk curve (McCarthy 1996), provides a better (continuous, unbounded) representation of extinction risk than probability of extinction or quasi-extinction (McCarthy & Thompson 2001). We calculated EMA by taking the smallest population size observed in each iteration and averaging these minima.

We also calculated three spatial measures that are commonly used to infer extinction likelihood: change in total habitat suitability (from RAMAS), occupied range area (area of cells greater than habitat-suitability threshold) and average cockatoo density (see Fordham et al. 2011 for details). Density was calculated by relating the population size at each time step to habitat-suitability values per grid cell in suitable patches.

MODEL SCENARIOS

We generated RAMAS models for three climate scenarios: WRE750, LEV1 and a control scenario with no climate change. For each climate scenario, we assessed GBC population viability given changes in fire frequency, disease outbreak and changes in management from funding constraints. We modelled severe fires as reducing GBC fecundity by 10% and adult and sub-adult survival by 3%, based on responses measured in 2007 (Sobey & Pedler 2008; P.A. Mooney personal communication). Wildfire frequency was modelled as increasing with building fuel loads. Baseline scenarios include an annual probability of severe fire of 68% (Appendix S5). We modelled 5%, 25% and 220% (i.e. 2-fold) increases in fire frequency under climate change (Lucas et al. 2007). It was not realistic to model any fire increases for the no climate change scenario or the 25% or 220% increase for the mitigation LEV1 scenario (Appendix S5). Psittacine beak-and-feather-disease outbreaks were modelled as reducing sub-adult survival by 50%, with an annual probability of an outbreak of 5% (DEH 2005; Appendix S5). We modelled ending brush-tail possum, little corella and revegetation management as causing decreases of 44%, 7% and 3% reductions in fecundity, respectively (Mooney & Pedler 2005).

SENSITIVITY ANALYSIS

We used a Latin Hypercube sensitivity analysis to assess the impact of varying the values of six key input parameters (adult survival, varied by ±5%; sub-adult survival, ±10%; fecundity, ±10%; carrying capacity, ±20%; and proportion of population dispersing annually, ±20%) on GBC mean final population size (Iman, Nelson & Campbell 1981). Latin Hypercube sampling, which simultaneously varies the values of the input parameters and then estimates sensitivity by fitting a spline regression model, is arguably preferable to other Monte Carlo techniques because it requires many fewer iterations to sample the parameter space whilst allowing for co-variation in parameter choices (McKay, Beckman & Conover 1979). We fit a Poisson GLM with all six predictors (a segmented linear model was used for adult survival; segmented package in R; Appendix S5) and calculated standardised regression coefficients (fitted slopes divided by their standard errors) to rank the importance of the input parameters (Conroy & Brook 2003). We also tested the model’s sensitivity to parameterisation of disease outbreaks by doubling the frequency of simulated outbreaks, increasing the impact to a 75% reduction in survival and combining these parameterisations.

Results

DEMOGRAPHY

The best-supported mark-resight survival model was stage-structured and time invariant (Table S2). There was also statistical support for the next eight models (Δ AICc < 2), yet the majority of model structural deviance was explained by the most parsimonious model (88% compared to 99%). The annual survival estimates so derived were 0.612 ± 0.0388 SE for juveniles and 0.913 ± 0.0123 SE for adults. All of the top-ranked 10 survival models incorporated stage structure with two age classes. There was little evidence for differences in survival between the sexes over the study period from the mark-resight data. Models including environmental covariates were suboptimal regardless of stage structure. All covariate models with no stage structure had wAICc < 0.01.

We used a mean annual fecundity estimate of 0.232 ± 0.0053 SE female nestlings produced per female of breeding age, and 0.296 ± 0.0068 SE male nestlings produced per female of breeding age, from 1996 to 2008, such that the finite rate of increase in the resultant matrix model was 1.0345, indicating a population increasing deterministically by 3.5% per year (Table 1; Appendix S2). The elasticities suggest that the rate of increase is most sensitive to adult survival.

SPATIAL RESULTS

There was considerable overlap between Allocasuarina verticillata patches and GBC presences. Approximately, 32% of GBC presences (feeding, nesting and band observations) were inside an A. verticillata patch, and 79% of presences were within 1 km of an A. verticillata patch (only 19% of the island is within 1 km of a patch).

The bioclimatic envelope modelling predicts that most of A. verticillata’s range (and consequently the GBC’s habitat) will remain intact under the reduced emissions (LEV1) scenario, whilst the range is likely to contract substantially under the high-CO2-concentration scenario (WRE750) (Fig. 2). The majority of suitable habitat that is predicted to remain at the end of the century under the WRE750 emissions scenario is on the island’s higher-elevation western plateau (Figs 1, 2). By 2100, total habitat suitability declined substantially (decreasing by 12%) in the WRE750 scenario, whereas suitability decreased by just 1% under LEV1 (Fig. 3). Range area was inversely related to average cockatoo density per cell (Fig. 3). This was especially evident for WRE750, where range area contracted by 77% and predicted density increased by 57% by 2100. Range area declined by only 6% in the LEV1 scenario (Fig. 3).

POPULATION VIABILITY

Habitat changes caused by unmitigated climate change had a strong effect on population viability, with simulated final population size and expected minimum abundance always <160 birds, which is roughly equivalent to a return to the population

bottleneck of the 1980s (Fig. 4, Fig. S2). In contrast, all simulations in the no climate change (control) case had final population sizes >635, and EMA >350, unless brush-tail possum management ceased. The strong mitigation (LEV1) simulations had slightly lower final population sizes than the no climate change case, but still had all final population sizes >595 unless there was no possum management. The simulations predicted that stopping possum management would have a serious effect on the population with all EMAs below 90 birds. Scenarios that ceased possum management were the only cases when the population did not stay close to carrying capacity. Unlike all other scenarios, possum scenarios had considerable probabilities of quasi-extinction (falling below 50 individuals): 10% for no climate change, 11% for LEV1 and 36% for WRE750. Stopping all management actions caused severe declines, with EMAs <26 birds for each scenario. The other catastrophes and changes in management had much more minor effects compared to possum management, although they did impact the population in the hypothesised directions (e.g. increased fire management caused slightly higher population sizes in LEV1 and no climate change). In this group of scenarios, beak-and-feather-disease outbreak had the strongest effects, but still only resulted in final population size reductions of 13, 12 and 1, compared to the baseline for no climate change, LEV1 and WRE750, respectively.

SENSITIVITY ANALYSIS

The Latin Hypercube sensitivity analysis indicated that model results were most heavily influenced by parameterisation of adult survival (top-ranked in each climate scenario) and carrying capacity (ranked second in each scenario; Fig. 5; Table S4). The standardised regression coefficients show that adult survival (low + high values from the segmented model) accounted for 35% (WRE750) to 52% (no climate change) of total sensitivity, whilst carrying capacity accounted for 21–32% of total sensitivity, respectively (Table S4). Decreased adult survival resulted in severe declines in GBC final population size, whilst increased adult survival had only slight or moderate effects because the modelled population, with the current survival estimate of 0Æ913, tracks carrying capacity with a positive population growth rate. Accordingly, varying carrying capacity also had substantial effects on final population size, especially for the WRE750 scenario where range area declines sharply. The other input parameters had small effects with sub-adult survival, fecundity and dispersal listed in order of decreasing importance. The additional disease outbreak sensitivity analysis indicated that increasing disease frequency or impact did not have substantially different effects on the population unless they were combined in the same scenario (Table S5).
Discussion

The population viability analysis for the South Australian glossy black-cockatoo illustrates the type of applied management questions that can be addressed using coupled demographic-bioclimatic approaches, as well as a method for incorporating dynamic vegetation-driven habitat change into animal population forecasts. The modelling indicates that the outlook for this small population depends strongly on continuous funding for management and global efforts to mitigate CO2 emissions. The simulations suggest that GBC population size will increase under a low emissions future even if disease outbreaks were to occur, most management actions were reduced, and fire frequency was to increase. The gradual increase in the population over the last 15 years, combined with the large stands of underused Allocasuarina verticillata on the island, shows the potential for continued population growth. In contrast, a failure to mitigate CO2 emissions could severely reduce GBC range area, critically threatening long-term population viability. Regardless of emissions scenario, our predictions indicate that the GBC’s insular geographic constraints and low population size, which is well below estimates of minimum viable estimates for most species (Traill et al. 2010), may leave the species vulnerable to decline.

Climate change under high CO2 emissions (WRE750) caused a large reduction in range area, and contraction to the cooler and wetter western plateau, whilst habitat changes under low emissions (LEV1) were minimal, with range area decreasing modestly and habitat suitability remaining almost constant. Under high emissions, population size did not decrease as rapidly as range area because habitat suitability and cockatoo density initially increased in the remaining habitat (Fig. 3). These results indicate that range area is unlikely to be linearly related to GBC abundance. Habitat differences translated into much lower EMA for all high emissions scenarios compared to low emissions and no climate change. A population of 150 animals is inherently at risk of extinction from stochastic small-population processes (Traill et al. 2010). We did not run simulations beyond 2100 because of uncertainty in climate projections, but such small population sizes at the end of the century do not bode well for the GBC’s persistence under a high-CO2-concentration scenario.

Simulating reduced brush-tail possum management had a profound impact on GBC EMA, whilst reduction in little corella management was almost negligible because of the resilient GBC population. The absence of a strong response to corella management indicates that culling could be experimentally stopped in some areas in an adaptive management framework to save resources. Simulated psittacine beak-and-feather-disease outbreaks also had only slight effects on the GBC population. If mortality rates become higher and outbreak frequency is increased, disease could become a potent threat (Table S5). We suggest that continued vigilance and communication with organisations involved with disease management in other threatened parrots (e.g. orange-bellied parrot Neophema chrysogaster Latham) is needed.

Our results indicate that revegetation is only having small effects on the population at present, but altered spatial patterns of A. verticillata abundance from climate change and the carrying capacity of 653 individuals will probably necessitate revegetation in the future. Our model assumed full dispersal and establishment of habitat trees (with implicit instantaneous seed production), which may overestimate A. verticillata’s ability to colonise new areas. Given the strong likelihood that emissions will exceed LEV1 levels (IPCC 2007) and that A. verticillata recruitment is limited by herbivores such as tammar wallaby Macropus eugenii Desmarest, managers will probably need to revegetate to maintain A. verticillata and GBC populations. Although revegetation effort could be reduced over the short term, key model assumptions (full dispersal and unlimited recruitment of A. verticillata) and model sensitivity to variation in carrying capacity (driven by climate related changes in A. verticillata) mean that managers should be ready for intensive revegetation in the future.

Management and monitoring should focus on maintaining adult survival and fecundity at their current levels. The acute
The sensitivity of the model to lower (but still plausible) values of adult survival in the range of 85–90% emphasises the importance of monitoring adult survival over time. Predation from raptors such as wedge-tailed eagles Aquila audax Latham, climate variation, fire frequency and food availability may be important drivers of adult survival (Mooney & Pedler 2005), but there was no evidence of changing survival during the study period, and these relationships are incompletely known. Threats to the GBC may change over time, and the effects of climate variation on survival can be difficult to detect without monitoring data sets that span decades (Grosbois et al. 2008). Therefore, we suggest that mark-resight and reproductive data should continue to be collected to build this unique data set and allow ongoing analysis of the drivers of adult survival.

In addition to collecting data on the GBC, studies of Allocasuarina verticillata are needed to improve forecasts of the GBC’s extinction risk. In particular, studies on the effects of drought, warmer temperatures and fire on A. verticillata survival, recruitment and seed production are needed, especially given that climate change is likely to cause more extreme environmental events that would affect the life cycle of this food plant. New data could then be integrated with analyses that combine demographic models of both A. verticillata and the GBC.

Our approach minimised uncertainty by combining a comprehensive demographic data set with rigorous methods, including mark-resight estimation of survival and ensemble bioclimatic and global climate modelling, yet the model’s assumptions should be considered when interpreting our results. The projected range contraction of Allocasuarina verticillata under the high emissions scenario assumes that the species’ distribution–climate relationship remains the same as today and that climate is the main driver of range changes (species interactions are not considered for this plant). In addition, our model assumes that the relationship between A. verticillata and the GBC will remain strong in the future.

In conclusion, the results of our coupled demographic-BEM simulations suggest that the GBC is likely to continue its population increase over time until carrying capacity is reached, provided the climate remains similar to today and intensive possum control continues. However, should unmitigated climate change or reduced adult survival occur, severe declines are probable. We recommend continued intensive life-history monitoring.
monitoring on the GBC, possum management and research on *A. verticillata*, to promote the persistence of the GBC. The methods illustrated here demonstrate how species interactions can be included in coupled demographic-bioclimatic modelling approaches to add realism to forecasts of population viability under climate change for well-studied species of conservation concern. Furthermore, our analysis shows how coupled models can provide practical management advice in the face of broader issues and uncertainties such as global emissions mitigation.

Acknowledgements

Andrew Graham generously assisted with the GBC data base. Peter Lang verified *A. verticillata* soil preferences and validated the bioclimatic model. Eleanor Sobery summarised available data. Colin Wilson interpreted revegetation effort and Charlotte Morgan assisted with fire history. Mark Holdsworth gave beat-and-feather-disease expertise. We thank Steven Delean, Jane Ethil, Lee Heard, Dan Wei, Peter Wilson and members of the Global Ecology Lab (Adelaide) for technical assistance. Fernando Colchero and an anonymous reviewer gave valuable comments on the manuscript. Peter Copley and Phil Pisani provided logistical support. Funding was provided by SA DERN, University of Adelaide EIPRS and ARC grant LP0909420. HRA was supported by NASA grant NNX09AK95G, awarded through the NASA Biodiversity Program.

References

Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. *Biology Letters*, 4, 560–563.

Supporting Information

Additional supporting information may be found in the online version of this article.

Fig. S1. Annual dispersal-distance curve for the *Calyptorhynchus lathami halmaturinus* population on Kangaroo Island.

Fig. S2. Mean final population size of persisting runs (±SD) of *Calyptorhynchus lathami halmaturinus* under no climate change, a greenhouse gas mitigation policy scenario (LEV1) and a high-CO2-concentration stabilisation reference scenario (WRE750).

Table S1. Covariates and their data sources for the mark-recapture survival analysis of *Calyptorhynchus lathami halmaturinus* on Kangaroo Island.

Table S2. Comparison of survival model results from Cormack-Jolly-Seber models in program MARK.

Table S3. Results of binomial GLMs relating spatial variables to *Calyptorhynchus lathami halmaturinus* presences on Kangaroo Island.

Table S4. Latin Hypercube sensitivity analysis results.

Table S5. Sensitivity of results to parameterisation of disease outbreaks.

Appendix S1. Previous modelling studies on the Kangaroo Island GBC.

Appendix S2. Detailed population-modelling methods.

Appendix S3. Climate change forecasts and bioclimatic envelope modelling methods.

Appendix S4. Integrating population and distribution models (methods).

Appendix S5. RAMAS scenarios and sensitivity analysis methods.

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Received 13 November 2011; accepted 24 May 2012

Handling Editor: Chris Elphick

Supporting Information

Appendix 1. Previous modelling studies on the Kangaroo Island GBC

Two previous studies used population models to estimate the viability of the GBC population, although neither considered climate change. Pepper (1996) used survival estimates from Carnaby’s black-cockatoo (C. latirostris) and fecundity data from the little reproductive research that had been done on Kangaroo Island by that time. Using VORTEX software (Lacy 1993), Pepper (1996) calculated a mean time to extinction of 5.8 years. Pepper (1996) doubted the results and suggested that the assumptions of the model were incorrect. Southgate (2002) used mark-recapture data from 1996–2001 to estimate survival, without explicitly modelling recapture probability. He calculated survival to be 0.296 for egg to age 1, 0.77 for age 1 to 2, 0.83 for age 2 to 3, and c.0.85 for age 3+. Southgate (2002) used data on sex ratio, clutch size, and percent of females breeding to estimate fecundity to be equal to 0.4 for female nestlings. Southgate (2002) used the software ALEX (Possingham & Davies 1995) to estimate that the GBC population was declining by 10% a year. This finding conflicted with census data which showed the population was increasing by c. 4% annually. Southgate (2002) attributed the discrepancy to inaccurate survival data.

Appendix 2. Detailed population modelling methods

Demographic structure

We used life history data and expert knowledge from the GBC recovery program to parameterise the model (Crowder et al. 1994; Table 1). Breeding age for females is three years and for males is five years (LPP, pers. obs.; Mooney & Pedler 2005), and the species
forms permanent or semi-permanent monogamous pairs (Garnett et al. 2000). Black-cockatoos probably show minimal reproductive senescence (Heinsohn et al. 2009). Thus, we developed a stage- and sex-structured model with composite age classes for breeding female (3+) and male age (5+) classes. Changes in mortality related to senescence are unknown in Calyptorhynchus lathami but we simulated the possible effects of senescence by adding a senescent stage (age 20+), whereby mortality in this oldest stage was doubled. We found that the growth rate (lambda) was reduced from 1.035 to 1.011.

Survival estimates

We estimated survival from 950 observations of 317 individuals marked between 1996–2008, using the Cormack-Jolly-Seber model for live recaptures in Program MARK (Cooch & White 2008). We used a two-stage modelling approach for mark-recapture data, whereby recaptures were initially modelled in combination with the most parameterised survival model, so as to retain as much power as possible for testing likely drivers of survival parameters (see Pardon et al. 2003 for justification). After the optimal recapture model was selected, a parsimonious survival model was sought.

Initially, we were interested in testing the effects of 13 covariates on annual cockatoo survival. We tested for correlations among covariates with a Spearman correlation matrix and excluded five correlated variables (all remaining variables had all Spearman coefficients <0.65; most were <0.3). The final analysis tested the effects of eight covariates on survival (Table S1). The covariates for extreme events (drought, river flow, and repeated fire) were best represented by thresholds in order to model GBC tolerance to low levels of these variables. Therefore we converted these covariates into a binary format—ones or zeros if the values were above or below the median, respectively. Models were tested from an a priori candidate set of 27 ecologically plausible models, which were developed based on our
experience with the species in the field. We used a hierarchical approach when testing for the optimal survival model (using likelihood) (Cooch & White 2008). We first tested for a cohort effect but found no evidence for this. Then we tested different stage structures (two, three, or four age classes) and found two stages was optimal. As the final step we compared models with no stage structure to those with two stages. Both classes of models included constant, time-variant, and environmental covariate models. The only difference was that models with no stage structure compared eight covariates (Table S1), while stage-structured models compared the three covariates (available protected hollows, number of hollows treated for bees, and number of little corellas Cacatua sanguinea culled) that were likely to have a stronger effect on sub-adults than adults (Mooney & Pedler 2005). Models with ΔAIC <0.01 are not included in Table S2.

We used parametric bootstrapping to estimate goodness-of-fit in the mark-recapture data (White 2002). We calculated $\hat{c} = 1.08$ by dividing the observed deviance for the most parameterised model by the mean deviance from 1,000 bootstrap simulations. This low value suggests little overdispersion and requires no adjustment (White, Burnham & Anderson 2001).

For model comparisons, we report $-2*\log(likelihood)$ as the measure of deviance. We calculated an R^2 statistic from an analysis of deviance based on the following formula from Le Bohec et al. (2008):

$$R^2 = \frac{\text{DEV(constant model)} - \text{DEV(covariate model)})}{\text{DEV(constant model)} - \text{DEV(time-dependent model)}}$$

where DEV is deviance. The advantage of this method is that it assesses the relative effects of covariates on survival and recapture rates. We used MARK to calculate weighted averages of the parameter estimates from the Akaike weights (Burnham & Andersen 2002). Mark-resight data area continually collected by the recovery program. Researchers wishing to use GBC survival estimates should contact the recovery program for the latest figures.
Table S1. Covariates and their data sources for the mark-recapture survival analysis of *Calyptorhynchus lathami halmaturinus* on Kangaroo Island. **availprot** = available protected hollows (artificial + natural); **bee** = number of hollows with honeybee *Apis mellifera* deterrent inserted; **corella** = number of little corellas *Cacatua sanguinea* culled; **drought** = drought index (total rainfall in previous five years); **heat** = number of summer days ≥ 35 °C; **flow** = flow in Rocky River; **revegetation** = area revegetated with *A. verticillata* (with a six year delay because *A. verticillata* cones require a minimum of six years to mature; PAM pers. obs.); **fire** = repeated fire index (area burned in previous 5 years)

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Source</th>
<th>Possible effect on cockatoos</th>
</tr>
</thead>
<tbody>
<tr>
<td>availprot</td>
<td>GBCRP data*</td>
<td>Nest predation by possums</td>
</tr>
<tr>
<td>bee</td>
<td>GBCRP data</td>
<td>Hollow competition</td>
</tr>
<tr>
<td>corella</td>
<td>GBCRP data</td>
<td>Hollow competition/nest predation</td>
</tr>
<tr>
<td>drought (threshold)</td>
<td>BOM, mean of 7 stations†</td>
<td>A. verticillata seed production and drinking water</td>
</tr>
<tr>
<td>heat</td>
<td>BOM, mean of 3 stations‡</td>
<td>Heat stress on adults</td>
</tr>
<tr>
<td>flow (threshold)</td>
<td>DWLBC¶</td>
<td>Proxy for available surface water for cockatoo drinking</td>
</tr>
<tr>
<td>revegetation</td>
<td>GBCRP data</td>
<td>A. verticillata seed production</td>
</tr>
<tr>
<td>fire (threshold)</td>
<td>GBCRP/DENR data</td>
<td>Reduction of nesting and feeding habitat</td>
</tr>
</tbody>
</table>

*Glossy black-cockatoo recovery program. See Mooney & Pedler (2005) for details.
†Bureau of Meteorology. We used data from weather stations with the most complete collection histories: stations 22800, 22801/23, 22803, 22817, 22835, 22836, & 22839 for rain; stations 22801/23, 22803, & 22841 for temperature. http://www.bom.gov.au
‡Summer is defined as December of the previous year and January and February of the current year. See Cameron (2008), Saunders, Mawson & Dawson (2011) for information on heat stress in *Calyptorhynchus*.
Table S2. Comparison of survival model results from Cormack-Jolly-Seber models in program MARK. The optimal recapture model was stage-structured and time-dependent.

<table>
<thead>
<tr>
<th>Model</th>
<th>Δ AIC_c</th>
<th>w_i</th>
<th>k</th>
<th>LL</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>subad(.) ad(.)</td>
<td>0</td>
<td>0.20</td>
<td>15</td>
<td>2601.1</td>
<td>0.88</td>
</tr>
<tr>
<td>subad(corella) ad(.)</td>
<td>0.2</td>
<td>0.18</td>
<td>16</td>
<td>2599.2</td>
<td>0.90</td>
</tr>
<tr>
<td>subad(bee) ad(bee)</td>
<td>1.0</td>
<td>0.12</td>
<td>16</td>
<td>2600.0</td>
<td>0.89</td>
</tr>
<tr>
<td>subad(availprot) ad(.)</td>
<td>1.5</td>
<td>0.09</td>
<td>16</td>
<td>2600.5</td>
<td>0.88</td>
</tr>
<tr>
<td>subad(.) ad(.) + sex</td>
<td>1.6</td>
<td>0.09</td>
<td>16</td>
<td>2600.6</td>
<td>0.88</td>
</tr>
<tr>
<td>subad(availprot + corella) ad(.)</td>
<td>1.7</td>
<td>0.09</td>
<td>17</td>
<td>2598.6</td>
<td>0.90</td>
</tr>
<tr>
<td>subad(availprot) ad(availprot)</td>
<td>1.7</td>
<td>0.08</td>
<td>16</td>
<td>2600.7</td>
<td>0.88</td>
</tr>
<tr>
<td>subad(corella) ad(corella)</td>
<td>1.8</td>
<td>0.08</td>
<td>16</td>
<td>2600.8</td>
<td>0.88</td>
</tr>
<tr>
<td>subad(bee) ad(.)</td>
<td>2.0</td>
<td>0.07</td>
<td>16</td>
<td>2601.0</td>
<td>0.88</td>
</tr>
<tr>
<td>subad(t) ad(t) + sex</td>
<td>10.4</td>
<td>0</td>
<td>27</td>
<td>2586.6</td>
<td>1</td>
</tr>
<tr>
<td>constant</td>
<td>103.4</td>
<td>0</td>
<td>14</td>
<td>2706.5</td>
<td>0</td>
</tr>
<tr>
<td>t</td>
<td>104.4</td>
<td>0</td>
<td>25</td>
<td>2684.7</td>
<td>0.18</td>
</tr>
<tr>
<td>sex + t</td>
<td>105.5</td>
<td>0</td>
<td>26</td>
<td>2683.8</td>
<td>0.19</td>
</tr>
</tbody>
</table>

t represents time. subad represents sub-adults, ad represents adults. Explanatory variables (Table S1) are availprot = available protected hollows, bee = hollows treated for bees, corella = number of corellas culled, repfire = repeated fires in the last five years. k indicates the number of parameters, AIC_c is Akaike’s Information Criterion corrected for small samples sizes, Δ AIC_c shows the difference between the model AIC and the minimum AIC in the set of models, AIC weights (w_i) show the relative likelihood of model i and % DE is percent deviance explained by the model.
Fecundity

We used the number of known fledglings in the population from 1996–2008 to measure reproductive output in the population. This number is calculated each year by summing the number of large nestlings seen at the nest up to a week before fledging, and additional fledglings noted during the census. Sex ratio of fledglings and adults is 1.3 and 1.5 males to females, respectively (GBC recovery program data, 1996–2008). Fecundity was calculated thus (Brook & Whitehead 2005):

\[
\text{Number of nestlings of one sex produced per pair in year } i = \\
\frac{x \times \text{Number of known fledglings in year } i}{\text{Population estimate in year } i \times \text{proportion of females in breeding age class}}
\]

The denominator represents the number of pairs alive in year \(i\) which is defined by the number of breeding females in the population because females are limiting; the proportion of females of breeding age (0.31) comes from the stable age distribution. \(x\), the fledgling sex proportion, is equal to 0.4 and 0.6 to estimate the number of females and males produced per breeding female, respectively (LPP pers. obs.). We then multiplied the number of fledglings per female with adult survival to calculate fecundity based on a post-breeding census. This resulted in a lambda < 1, whereas the observed population change indicated an annual rate of increase (R) of 1.035. We thus adjusted the fecundities so that the eigenvalue of the stage matrix is 1.035.

Environmental stochasticity

RAMAS GIS simulates environmental stochasticity by sampling distributions as specified by the mean and standard deviation of each stage matrix element (Akçakaya & Root 2005). To estimate standard deviation of fecundity we followed Akçakaya’s (2002) approach.
of subtracting the weighted average of demographic variance from the total variance. These methods are commonly used to separate demographic and environmental variability for population viability analyses (Lambert et al. 2006, Zeigler et al. 2010, Aiello-Lammens et al. 2011). For the standard deviation of survival estimates, we used the square root of the process error (sigma) reported by MARK (White, Burnham & Anderson 2001).

Appendix 3. Climate change forecasts and bioclimatic envelope modelling

Climate change forecasts

Spatial layers describing present day climate (0.01° x 0.01° latitude/longitude) were created by interpolating between weather station records sourced from the Queensland Government SILO patched point data base (Jeffrey et al. 2001), following the approach described in detail by Fordham et al. (in press-a).

We used MAGICC/SCENGEN v5.3 (http://www.cgd.ucar.edu/cas/wigley/magicc), a coupled gas cycle/aerosol/climate model used in the IPCC Fourth Assessment Report (IPCC 2007), to generate an annual time series of future climate anomalies for (2000–2100) for annual, austral winter and summer precipitation and temperature (0.5° x 0.5° latitude/longitude; annual rainfall, January temperature, and July temperature in this study). Projections were based on two emission scenarios: a high-CO₂-concentration stabilisation reference scenario, WRE750, and a policy scenario that assumed substantive intervention in CO₂ emissions, LEV1 (Wigley, Richels & Edmonds 1996; Wigley et al. 2009). Models were chosen using an assessment of model convergence and skill in predicting seasonal precipitation and temperature (see Fordham et al. in press-a for details). The nine skilful GCMs used to generate the multi- climate model ensemble average forecasts were GFDL-
CM2.1, MIROC3.2(hires), ECHAM5/MPI-OM, CCSM3, ECHO-G, MRI-CGCM2.3.2, UKMO-HadCM3, GFDL-CM2.1, MIROC3.2 (medres) (model terminology follows the CMIP3 model database; http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Although there is no standard procedure for assessing the skill of GCMs (Fordham, Wigley & Brook 2012), by using an ensemble model set of greater than five GCMs, the influence of model choice on model prediction skill is lessened (Murphy et al. 2004; Pierce et al. 2009).

We downscaled the climate anomalies to an ecologically relevant spatial scale (0.01 x 0.01° longitude/latitude), using the “change factor” method, whereby the low-resolution change from a GCM is added directly to a high-resolution baseline observed climatology (Hulme, Raper & Wigley 1995). One advantage of this method is that, by using only GCM change data, it avoids possible errors due to biases in the GCMs’ baseline (present-day) climate (Fordham, Wigley & Brook 2012; Fordham et al. 2012).

Bioclimatic envelope modelling

Allocasuarina verticillata *presence data*

We modelled the bioclimatic envelope of *Allocasuarina verticillata* (drooping she-oak) because it provides the primary habitat and 98% of the diet of the GBC. *A. verticillata* presences came from Department of the Environment and Natural Resources (DENR) biological survey records across South Australia (http://www.environment.sa.gov.au/Knowledge_Bank/Information_and_data/Biological_data bases_of_South_Australia). The presences were carefully cleaned before inclusion; only records with an accuracy of 1 km or better were retained, duplicate and erroneous records were removed, and no opportunistic records were included, which left 572 presences for the analysis. Much of *A. verticillata*’s range has been cleared, which may influence our ability to model the species’s distribution. Using presences from across the species’s South Australian
range and requesting validation from local plant ecologists helped address this issue. An
equal number of pseudoabsences were generated randomly within the study region; random
pseudoabsences were appropriate in this case because of the difficulty of intensively
sampling the study area (South Australia) (Wisz & Guisan 2009). Plant ecologists identified
three climate variables as having the greatest general influence on *A. verticillata* survival and
recruitment: mean annual rainfall, mean January temperature, and mean July temperature
(Stead 2008).

Ensemble forecasting

The potential distribution of *A. verticillata* was modelled with an ensemble
forecasting approach (Araújo & New 2007) based on seven BEM techniques: BIOCLIM
(Busby 1991), Euclidian and Mahalanobis distances (Farber & Kadmon 2003), generalised
linear models (GLMs; McCullagh & Nelder 1989); Random Forest (Breiman 2001), Genetic
Algorithm for Rule Set Production (Stockwell & Noble 1992), and Maximum Entropy
(Phillips & Dudík 2008) in BIOENSEMBLES software (Diniz-Filho *et al.* 2009). Internal
evaluation of the models was performed with a data split procedure, whereby 70% of the
occurrence data were randomly split and used for calibration of the models, and the
remaining 30% were used for cross-evaluation of the models. This procedure was repeated 10
times, thus generating a 10-fold cross-validation of model results. The observed prevalence of
species was maintained in each partition, and for each partition we obtained alternative
models by projecting ranges after performing a full factorial combination of the
environmental variables used as predictors. The fitting and projection of alternative models
using data partition and multiple combinations of variables was used to account for
uncertainties arising from the initial conditions and model parameterization (sensu Araújo &
New 2007). Model accuracy was measured using the average True Skill Statistic (Allouche,
Tsoar & Kadmon 2006). This analysis was performed to check if a grossly implausible
projection was being made (i.e. TSS < 0.3). However, because measures of accuracy on non-independent data do not provide a reliable benchmark for evaluation of projections of species distributional changes under climate change (Araújo et al. 2005), we instead used an unweighted consensus of the seven modelling techniques. The resulting map of the current distribution was validated by an expert botanist (P. Lang, DENR). We then ran the distribution models with the climate layers for 2011–2100 (described above) to create a combined time series of 91 climatic suitability maps for each year from 2010 to 2100.

The climate projected for 2100 on Kangaroo Island was within the range of variation in the training data for 2010. This was true for all three climate variables in both emissions scenarios. Therefore the bioclimatic model did not extrapolate to novel climates, which reduces uncertainty in projections (Pearson & Dawson 2003).

Appendix 4. Integrating population and distribution models

Calculating the habitat suitability function

The *A. verticillata* probability of occurrence maps for 2010–2100 (hereafter ‘AVS’) were added to edaphic spatial layers (substrate, slope, and native vegetation) to mask out unsuitable areas and delineate more suitable areas for *A. verticillata* and the GBC (Pearson, Dawson & Liu 2004). Substrate and slope are specific to *A. verticillata*, while native vegetation affects *A. verticillata* and the GBC.

Substrate, or geology, strongly influences soil type and is an important predictor of *A. verticillata* presence (Specht & Perry 1948; Green 1994). We collapsed category classes in the Surface Geology of Australia dataset (1:1 million scale; Raymond & Retter 2010) into 17 classes in South Australia. Expert knowledge was used to define which substrate classes are unsuitable for *A. verticillata* (mainly Holocene sands, and floodplain alluvium; P. Lang

We used binomial GLMs to relate the spatial layers to cockatoo presences and generate the habitat suitability function. Presence data for the GBC (349 points) came from active nest locations (n = 157; GBC recovery program data), band observations (n = 100; GBC recovery program data), known feeding sites (n = 18; GBC recovery program data), and the South Australian Biological Survey (n = 74). No reliable absence points were available for the GBC, so we were forced to generate psuedoabsences. Considering that the island has been well surveyed for GBCs, and that we wanted the model to focus on the factors determining its distribution within the landscapes in which one might reasonably expect to survey, we generated pseudoabsences using a positive distance weighting function that favours areas away from presences when creating pseudoabsences (Phillips *et al.* 2009; Wisz & Guisan 2009). We tested models from an *a priori* candidate model set generated using our knowledge of probable factors limiting the occurrence of GBCs. We primarily relied on Akaike’s Information Criterion corrected for small sample sizes (AICc) for model selection (Burnham & Andersen 2002), but we also calculated the Bayesian Information Criterion (BIC) because it is more conservative (tends to fit fewer tapering effects) and requires substantially better fit before selecting a more complex model (Bolker 2008).

Habitat suitability function
Our selected covariates adequately predict GBC occurrence, explaining 38.5% of the variance (Table S3). The best model (habitat suitability ~ substrate*slope + vegetation*AVS; wAIC of 0.954) became the habitat suitability function for the RAMAS model. Thus, habitat suitability is defined as:

\[
\text{habitat suitability} = \frac{(4.61* \text{[substrate]} + 1.49*(\text{thr}([\text{slope}],0.01366)) - 2.11* \text{[vegetation]} - 0.454*(\text{thr}([\text{AVS}],0.399)) - 0.8818* \text{[substrate]}*(\text{thr}([\text{slope}],0.01366)) + 3.784* \text{[vegetation]}*(\text{thr}([\text{AVS}],0.399)))* \text{[substrate]}}{5.34375}
\]

The coefficients were estimated from the binomial model. The entire equation is multiplied by substrate in order to mask out areas with unsuitable substrate, and then divided by 5.34375 to scale habitat suitability from 0 to 1 in each grid cell. We applied thresholds (thr) to slope and AVS such that this part of the equation was equal to zero unless the grid cell’s value was greater than the lower fifth percentile of the variable where GBCs occur. Thresholds used in this manner better capture species’ responses to continuous spatial variables in metapopulation models (DAF unpubl. data).

We used a threshold to determine a lower habitat suitability limit below which we would not expect an occurrence. Threshold selection affects range area predictions, and the choice of a threshold depends on the goals of the modelling exercise (Liu et al. 2005). The GBC population on Kangaroo Island has been carefully censused so we had high confidence that the distribution was well-represented by the point locality data. We aimed to characterise the current extent of medium to high quality habitat and predict the potential distribution of suitable habitat patches in the future which we did by selecting cells with a HS value higher than the value recorded for the lowest 5% of GBC presences. We used our knowledge of the species in the field to validate the resulting habitat suitability maps.
Table S3. Results of binomial GLMs relating spatial variables to *Calyptorhynchus lathamii* *halmaturinus* presences on Kangaroo Island. AVS stands for climatic suitability of *Allocasuarina verticillata* (the cockatoo’s food plant). The global model had the strongest AICc and BIC support, explaining 38.5% of model structural deviance. Of the single term models, slope had greatest support explaining 26.5% of model deviance. Models in bold had wAIC > 0.01.

<table>
<thead>
<tr>
<th>Model</th>
<th>% DE</th>
<th>wAICc</th>
<th>Δ AICc</th>
<th>wBIC</th>
<th>Δ BIC</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>substrateslope + vegetationAVS</td>
<td>38.5</td>
<td>0.954</td>
<td>0</td>
<td>0.497</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>substrate*slope + vegetation + AVS</td>
<td>35.9</td>
<td>0.022</td>
<td>7.5</td>
<td>0.065</td>
<td>4.1</td>
<td>6</td>
</tr>
<tr>
<td>slope + vegetation + AVS</td>
<td>35.1</td>
<td>0.015</td>
<td>8.4</td>
<td>0.245</td>
<td>1.4</td>
<td>5</td>
</tr>
<tr>
<td>substrate*slope + AVS</td>
<td>34.9</td>
<td>0.010</td>
<td>9.2</td>
<td>0.161</td>
<td>2.3</td>
<td>5</td>
</tr>
<tr>
<td>substrate*slope</td>
<td>31.4</td>
<td>0</td>
<td>20.0</td>
<td>0.004</td>
<td>9.5</td>
<td>4</td>
</tr>
<tr>
<td>substrate + slope</td>
<td>30.8</td>
<td>0</td>
<td>20.0</td>
<td>0.024</td>
<td>6.1</td>
<td>3</td>
</tr>
<tr>
<td>substrate + vegetation + slope</td>
<td>31.0</td>
<td>0</td>
<td>21.7</td>
<td>0.002</td>
<td>11.3</td>
<td>4</td>
</tr>
<tr>
<td>AVS*slope</td>
<td>30.8</td>
<td>0</td>
<td>22.1</td>
<td>0.001</td>
<td>11.6</td>
<td>4</td>
</tr>
<tr>
<td>slope</td>
<td>26.5</td>
<td>0</td>
<td>34.1</td>
<td>0</td>
<td>16.6</td>
<td>2</td>
</tr>
<tr>
<td>vegetation*slope</td>
<td>27.3</td>
<td>0</td>
<td>35.4</td>
<td>0</td>
<td>25.0</td>
<td>4</td>
</tr>
<tr>
<td>substrate + vegetation*AVS</td>
<td>20.0</td>
<td>0</td>
<td>64.6</td>
<td>0</td>
<td>57.6</td>
<td>5</td>
</tr>
<tr>
<td>substrate</td>
<td>10.8</td>
<td>0</td>
<td>92.6</td>
<td>0</td>
<td>75.1</td>
<td>2</td>
</tr>
<tr>
<td>vegetation*AVS</td>
<td>6.7</td>
<td>0</td>
<td>111.9</td>
<td>0</td>
<td>101.5</td>
<td>4</td>
</tr>
<tr>
<td>AVS</td>
<td>3.3</td>
<td>0</td>
<td>120.2</td>
<td>0</td>
<td>102.7</td>
<td>2</td>
</tr>
<tr>
<td>null</td>
<td>0</td>
<td>0</td>
<td>130.5</td>
<td>0</td>
<td>109.5</td>
<td>1</td>
</tr>
<tr>
<td>vegetation</td>
<td>0.04</td>
<td>0</td>
<td>132.4</td>
<td>0</td>
<td>114.9</td>
<td>2</td>
</tr>
</tbody>
</table>
Carrying capacity

Estimates of carrying capacity were based on previous research on *A. verticillata* productivity and extent on Kangaroo Island, and known density of GBCs in *A. verticillata* stands. One hectare of moderate quality she-oak habitat (334,000 cones) supports approximately 7.5 birds (Crowley, Garnett & Pedler 1997; Chapman & Paton 2002). The current area of *A. verticillata* on Kangaroo Island is 4,900 ha (SA DENR data), so the approximate carrying capacity of the island is 653 birds. This is a maximum estimate of current carrying capacity given that GBCs only feed on c. 10% of available *A. verticillata* (Chapman & Paton 2005). In RAMAS we used a scaling constant (0.233) to relate the known carrying capacity to the number of suitable cells (noc). We applied a threshold to the equation to eliminate very small unviable patches with carrying capacity <10 birds:

\[K = \text{thr}(0.233 \times \text{noc},10) \]

Initial abundance

Initial abundance was calculated in a similar way. Annual censuses of the population estimated the current population size at c. 350 individuals, so we used a lower scaling constant to approximate this:

\[N_{\text{initial}} = \text{thr}(0.125 \times \text{noc},10) \]

We ran trial scenarios with initial abundances of 100 and 200 birds and found that the population showed the same general responses as with 350 birds. These trials, combined with the carrying capacity of 653 under ceiling density dependence, suggest that the model was not very sensitive to initial population size.
Data on movements of marked birds were used to estimate annual dispersal. Available information suggests that approximately 73% of birds leave the general natal area annually and 23% of these leave the wider flock region, so c. 17% of birds disperse annually (Southgate 2002; Mooney & Pedler 2005). Dispersers moved an average of 44 km and up to 78 km (Southgate 2002). This high rate of dispersal supports our use of mark-recapture-derived survival estimates even though only a portion of the island is covered by the mark-recapture surveys. Our dispersal function had 17% of birds dispersing ≥28 km annually and 1% of the population (4 birds) dispersing 78 km annually (Fig. S1). We modelled dispersal as a function of the distance between the centres of suitable habitat patches.

\[\text{dispersal} \sim a = 0.8, b = 16.5, c = 1 \]
Figure S1. Annual dispersal-distance curve for the *Calyptorhynchus lathami halmaturinus* population on Kangaroo Island.

Correlation among grid cells

Environmental variability was set to be correlated between populations depending on their spatial separation. Pairwise correlations were calculated using an exponential function, $P = a \exp(D^{cb})$, where D is the distance between centroids of habitat patches and a, b and c are
constants. Following Keith et al. (2008), we used regional variation in year-to-year annual rainfall across South Australia to approximate environmental variability ($a = 0.79$, $b = 1266$, $c = 1$).

Appendix 5. RAMAS scenarios and sensitivity analysis

Fire

Baseline fire frequency

Four fires burned >10% of Kangaroo Island from 1950–2008, which yields an annual probability of severe fire of 6.8% (GBC recovery program data). Our vital rates estimates included the effects of past severe fires so we included observed fire frequency in the baseline scenarios. We modelled fire probability as being the lowest after a fire (0.1% probability) and then increasing with mounting fuel loads until the maximum probability (6.8%) is reached after seven years (Keith *et al.* 2008). To maintain structural simplicity of the model, it was assumed that fires burnt entire patches (i.e. no fire heterogeneity within patches).

Impacts of fire on the GBC

The best data on the effects of a severe fire on the GBC come from 2007 when fires burned 85,920 ha (19.5% of the island), destroying five known nest sites and 425 ha of *A. verticillata* feeding habitat (Sobey & Pedler 2008). Based on nesting data from 1997–2003, if five nests are lost, fecundity is reduced by 8–12%. Therefore we modelled the effects of a severe fire as having a 10% reduction in fecundity. Reduction in feeding habitat from severe fires is expected to have a minor, delayed impact on survival (DCP pers. obs.), so we modelled this effect by reducing sub-adult and adult survival by 3% after a severe fire.
Climate change and increased fire management

Climate change is predicted to cause a substantial increase in the number of days with very high to extreme fire danger on the Fleurieu Peninsula (Lucas et al. 2007). These predictions suggest that severe fire danger will increase by 5% or 25% by 2050 for low and high emissions scenarios, respectively. We interpreted these changes as percent increases in base probability of fire on Kangaroo Island and used the 2050 estimates as guidelines. Making the conservative assumption that there is a linear correlation between fire frequency and fire days, increases of 5% and 25% would yield annual fire probabilities of 7.1% and 8.5% on Kangaroo Island. We also considered a nonlinear example where a 2.2-fold increase in fire frequency yielded a 15% annual fire probability on Kangaroo Island (approximately doubling the current probability). We also investigated the impact of increasing fire management to reduce the annual probability of severe fire by half to 3.4%.

Disease

Psittacine beak-and-feather disease typically kills juvenile parrots only (DEH 2005). Virulence of the disease varies; major epidemics with high mortality can occur in isolated parrot populations with little immunity, while populations with previous exposure to the disease are more resilient (DEH 2005; Khalesi 2007). There have been no recorded cases of beak-and-feather disease on Kangaroo Island (LPP pers. obs.), so we assumed low immunity and high mortality. Little corellas regularly cross from the mainland to Kangaroo Island (Mooney & Pedler 2005) and could serve as vectors of the disease (DEH 2005). We modelled a possible outbreak by reducing survival of zero year olds and one year olds by 50%. We set
the annual probability of an outbreak at 5% and the probability of an infected dispersing bird
transmitting the disease at 75%. While the values of these parameters are poorly known in the
wild (Khalesi 2007) an expert on beak-and-feather disease confirmed that our
parameterisation was realistic (M. Holdsworth, pers. comm.).

Active management

Brushtail possum management

The GBC recovery team manages nest-predating brush-tail possums *Trichosurus
vulpecula* by placing metal collars around the trunks of GBC nest trees and pruning
overlapping tree crowns to prevent access to nest trees (Mooney & Pedler 2005). Possum
management can increase fecundity by 78% (the probability of an egg producing a fledgling
increases from 23% to 41%; Garnett, Pedler & Crowley 1999). If possum management were
stopped, fecundity would decrease by approximately 44%. We assumed a linear decrease in
fecundity after stopping management in 2010. By 2025 (15 years after stopping management)
all benefits from protected hollows are modelled as being lost (no new hollows protected, tree
crowns overlap, and metal collars rust and fall off trees; LPP pers. obs.) and fecundity is 44%
lower.

Corrella management

The little corella *Cacatua sanguinea* population on Kangaroo Island has increased
substantially over time, probably as a result of land clearance and grain cropping (Garnett *et
al.* 2000). Corellas compete with GBCs for nests and kill GBC nestlings. As a result, corellas
found near GBC nests have been culled since 1998. If corella management were stopped, it
has been estimated that approximately two GBC nestlings would be lost per year (Garnett, Pedler & Crowley 1999; PAM pers. obs.), so we modelled stopping corella management as causing a 7% drop in fecundity. We simulated stopping management in 2010 and assumed a linear decrease in fecundity that took five years to reach the 7% reduction.

Revegetation

Volunteers and the GBC recovery team have planted *A. verticillata* on Kangaroo Island since 1988 in an effort to augment GBC food sources. From 1996–2007, 39.3 ha were revegetated which amounts to 3.5 ha per year on average. Most revegetation is now done near traditional nesting areas where remnant *Allocasuarina verticillata* has been reduced considerably by clearing. Consequently, the current revegetation rate can be approximated as boosting fecundity by approximately 3% annually (PAM pers. obs.). We modelled stopping revegetation as causing a linear decline in fecundity that lead to a 3% drop in five years.

We also simulated the effects of stopping all management actions (possum, corella, and revegetation in 2010). This lead to a 24.7% decrease in fecundity in five years and a 54% drop in 15 years.

Sensitivity analysis

For the Latin Hypercube sensitivity analysis we took samples from 200 equal-width strata (following the method described in Brook, Griffiths & Puckey 2002) along the following ranges of parameter values relative to the value used in the RAMAS models: adult survival (± 5 %), sub-adult survival (± 10 %), fecundity (± 10 %), carrying capacity (± 20 %), and annual dispersal (± 20 %) (Brook, Griffiths & Puckey 2002). The range for fecundity is
equivalent to the standard error around the parameter estimate. The ranges for survival
needed to be larger than the standard errors to evaluate the model’s sensitivity over a
plausible range. We used large ranges for carrying capacity and dispersal for the same reason.

Standardised regression coefficients, calculated by dividing the coefficient of each
parameter by its standard error, and then weighting the resulting coefficients to sum to 1
(Conroy & Brook 2003), were used to assess the sensitivity of the model to the input
parameters. The coefficients were estimated by fitting a quasiPoisson GLM (to correct for
overdispersion) with all of the sensitivity analysis parameters (adult survival, sub-adult
survival, fecundity, carrying capacity, and annual dispersal). The non-linear, near-threshold
relationship between adult survival and final population size was broken into two parts and
was best dealt with by fitting a segmented model (Fig. 5; Muggeo 2012). Therefore, the GLM
included a segmented fit for adult survival which resulted in two parameters, one above and
one below the breakpoint. The breakpoints were estimated at 0.893 ± 0.00081 SE for no
climate change (6 iterations to reach convergence), 0.895 ± 0.0011 SE for LEV1 (8
iterations), and 0.886 ± 0.0010 SE for WRE750 (4 iterations). Bootstrapping with 10,000
samples was used to estimate the 95% confidence intervals for the parameter estimates.
Table S4. Latin Hypercube sensitivity analysis results. Standardised regression coefficients were calculated from generalised linear models to rank six sensitivity parameters in order of their importance on *Calyptorhynchus lathami halmaturinus* mean final population size. “adult survival-low” is the parameter below the break point in the segmented model and “adult survival-high” is the above the break point.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>no climate change</th>
<th>LEV1</th>
<th>WRE750</th>
</tr>
</thead>
<tbody>
<tr>
<td>adult survival-low</td>
<td>0.485</td>
<td>0.412</td>
<td>0.327</td>
</tr>
<tr>
<td>carrying capacity</td>
<td>0.211</td>
<td>0.246</td>
<td>0.319</td>
</tr>
<tr>
<td>juvenile survival</td>
<td>0.110</td>
<td>0.154</td>
<td>0.141</td>
</tr>
<tr>
<td>fecundity, daughters</td>
<td>0.087</td>
<td>0.093</td>
<td>0.076</td>
</tr>
<tr>
<td>dispersal</td>
<td>0.041</td>
<td>0.093</td>
<td>0.071</td>
</tr>
<tr>
<td>fecundity, sons</td>
<td>0.033</td>
<td>0.060</td>
<td>0.039</td>
</tr>
<tr>
<td>adult survival-high</td>
<td>0.033</td>
<td>0.022</td>
<td>0.026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>lower CI</th>
<th>upper CI</th>
<th>lower CI</th>
<th>upper CI</th>
<th>lower CI</th>
<th>upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>adult survival-low</td>
<td>65.8</td>
<td>103.4</td>
<td>50.5</td>
<td>152.8</td>
<td>45.2</td>
<td>131.4</td>
</tr>
<tr>
<td>carrying capacity</td>
<td>0.0009</td>
<td>0.0014</td>
<td>0.90</td>
<td>1.19</td>
<td>0.85</td>
<td>2.18</td>
</tr>
<tr>
<td>juvenile survival</td>
<td>0.76</td>
<td>1.86</td>
<td>1.41</td>
<td>5.04</td>
<td>0.43</td>
<td>3.16</td>
</tr>
<tr>
<td>fecundity, daughters</td>
<td>1.15</td>
<td>4.37</td>
<td>1.24</td>
<td>2.77</td>
<td>0.51</td>
<td>3.59</td>
</tr>
<tr>
<td>dispersal</td>
<td>-0.39</td>
<td>0.01</td>
<td>-0.11</td>
<td>0.34</td>
<td>-0.39</td>
<td>0.07</td>
</tr>
<tr>
<td>adult survival-high</td>
<td>0.27</td>
<td>1.78</td>
<td>-0.49</td>
<td>4.26</td>
<td>-0.31</td>
<td>1.81</td>
</tr>
</tbody>
</table>
Table S5. Sensitivity of results to parameterisation of disease outbreaks.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Mean final population size ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>649.66 ± 1.9</td>
</tr>
<tr>
<td>disease outbreak, 5% annual probability, sub-adult survival reduced by 50%(^1)</td>
<td>636.79 ± 29.1</td>
</tr>
<tr>
<td>disease outbreak, 10% annual probability, sub-adult survival reduced by 50%</td>
<td>605.35 ± 65.3</td>
</tr>
<tr>
<td>disease outbreak, 5% annual probability, sub-adult survival reduced by 75%</td>
<td>607.02 ± 69.6</td>
</tr>
<tr>
<td>disease outbreak, 10% annual probability, sub-adult survival reduced by 75%</td>
<td>449.25 ± 164.6</td>
</tr>
</tbody>
</table>

\(^1\)This is the parameterisation used in the present study (see Appendix 5).
Figure S2. Mean final population size of persisting runs (± SD) of *Calyptorhynchus lathami halmaturinus* under no climate change, a greenhouse gas mitigation policy scenario (LEV1), and a high-CO₂-concentration stabilisation reference scenario (WRE750). The initial population size was 350 individuals (dashed line). Baseline = baseline scenario that includes observed fire frequency; disease = beak-and-feather disease outbreak; -50% indicates 50% reduction in fire frequency from increased management; +5%, +25%, and +220% (i.e., 2.2-fold increase) indicate increasing fire frequency from climate change. The last four groups of bars show the effects of ceasing management. “Revegetation”, “corella”, and “possum” indicate stopping revegetation, little corella *Cacatua sanguinea*, and brush-tail possum *Trichosurus vulpecula* management, respectively. “All” indicates stopping all management actions.
References

DEH (2005) Threat abatement plan for beak and feather disease affecting psittacine species. Department of Environment and Heritage, Canberra ACT 2601, Australia. Available at:

Available at: http://www.ipcc.ch (accessed on 12 September 2011).

Meteorology, CSIRO Marine and Atmospheric Research, Melbourne, Victoria, Australia.

